Policy Iteration is well suited to optimize PageRank

نویسندگان

  • Romain Hollanders
  • Jean-Charles Delvenne
  • Raphaël M. Jungers
چکیده

The question of knowing whether the policy Iteration algorithm (PI) for solving Markov Decision Processes (MDPs) has exponential or (strongly) polynomial complexity has attracted much attention in the last 50 years. Recently, Fearnley proposed an example on which PI needs an exponential number of iterations to converge. Though, it has been observed that Fearnley’s example leaves open the possibility that PI behaves well in many particular cases, such as in problems that involve a fixed discount factor, or that are restricted to deterministic actions. In this paper, we analyze a large class of MDPs and we argue that PI is efficient in that case. The problems in this class are obtained when optimizing the PageRank of a particular node in the Markov chain. They are motivated by several practical applications. We show that adding natural constraints to this PageRank Optimization problem (PRO) makes it equivalent to the problem of optimizing the length of a stochastic path, which is a widely studied family of MDPs. Finally, we conjecture that PI runs in a polynomial number of iterations when applied to PRO. We give numerical arguments as well as the proof of our conjecture in a number of particular cases of practical importance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast ranking algorithm for very large data

In this paper, we propose a new ranking method inspired from previous results on the diffusion approach to solve linear equation. We describe new mathematical equations corresponding to this method and show through experimental results the potential computational gain. This ranking method is also compared to the well known PageRank model. Keywords-Large sparse matrix, Iteration, Fixed point, Pa...

متن کامل

A Parallel PageRank Algorithm with Power Iteration Acceleration

Based on the study about the basic idea of PageRank algorithm, combining with the MapReduce distributed programming concepts, the paper first proposed a parallel PageRank algorithm based on adjacency list which is suitable for massive data processing. Then, after examining the essential characteristics of iteration hidden behind the PageRank, it provided an iteration acceleration model based on...

متن کامل

Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient

PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer and thus it reflects the popularity of a Web page. Google computes the PageRank using the power iteration method which requires about one week of intensive computations. In the present work we propose and analyze Monte Carlo ty...

متن کامل

FrogWild! - Fast PageRank Approximations on Graph Engines

We propose FrogWild, a novel algorithm for fast approxi-mation of high PageRank vertices, geared towards reducingnetwork costs of running traditional PageRank algorithms.Our algorithm can be seen as a quantized version of poweriteration that performs multiple parallel random walks overa directed graph. One important innovation is that we in-troduce a modification to the ...

متن کامل

PageRank algorithm and Monte Carlo methods in PageRank Computation

PageRank is the algorithm used by the Google search engine for ranking web pages. PageRank Algorithm calculates for each page a relative importance score which can be interpreted as the frequency of how often a page is visited by a surfer. The purpose of this work is to provide a mathematical analysis of the PageRank Algorithm. We analyze the random surfer model and the linear algebra behind it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1108.3779  شماره 

صفحات  -

تاریخ انتشار 2011